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Abstract. Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile 
measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The 
transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are 
attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal 
(representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode 
decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. 
Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it 
allows accurate non-intrusive monitoring and trending of in-pile phenomena. 

INTRODUCTION 

In-pile instruments are used to detect and measure various physical parameters of fuels and materials during 
irradiation [1]. An ability to gather information on reactor in-pile phenomena can provide much needed 
understanding of fuel performance, material degradation, etc. This information can be used to validate simulation 
codes, refine simulation models, and assist preventing developing failure. Repeatedly removing samples from a 
reactor to measurements is expensive, has the potential to disturb phenomena of interest, and only provides 
understanding of the sample's end state when each measurement is made [2]. 

In the case of nuclear fuels during irradiation, the physical structure and chemical composition change as a 
function of time and position within the fuel pellet. For example, fuel pellets can swell, crack (micro-cracking), and 
fission gases can be released. These conditions can vary with time in the reactor, temperature, and fuel burn-up [3]. 
Woolstenhulme [4] discussed that a non-fuel component (the bottom plate) of the first fuel plate frame assembly 
became separated from the rail sides. The separation of this component was determined to have been caused by the 
flow-induced vibrations, where vortex-shedding frequencies were resonant with a natural frequency of the bottom 
plate component. This gave way to amplification, fracture, and separation from the assembly. It may have been 
possible to detect the destructive vortex induced vibrations had a vibrational baseline and active vibration 
monitoring been in place. 

The vibrational characterization of a reactor during operation will be beneficial to the reactor operators. A well-
designed vibrational characterization of the reactor will provide a baseline that will enable the development of 
acoustic based communication devices, diagnostic and prognostic techniques for structural monitoring of the reactor 
core and the experiments contained within. Although there are active activities to characterize machines and 
equipment outside the reactor, there is no comprehensive vibrational characterization to monitor activities inside a 
reactor. 
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 Transmission attenuation models will account for path loss between transmitted acoustic signal and external 
sensors receiving the signal. 

 Empirical mode decomposition technique decomposes noisy signal into IMFs. 
 Feature Space and Pattern Classification steps involve extracting appropriate features from the decomposed 

IMFs and design of classifier based on extracted features. Feature extraction and design of pattern classifier is 
currently beyond the scope of the paper. 

GAUSSIAN NOISE MODEL 

Fractional Gaussian noise is a generalization of white noise [10] and is implemented in the paper. It is closely 
linked with self-similar stochastic processes and random fractals both of which have been extensively considered in 
signal processing applications. It is expressed as incremental process of fractional Brownian motion and its 
statistical properties are controlled by a single parameter, , known as the Hurst exponent. For detailed discussion 
on statistical properties of the noise model, refer [10]. The value  is within the range  and  
corresponds to white Gaussian noise. 

TRANSMISSION PATH LOSS MODEL 

In broad terms, path loss (PL) is a measure of the average radio frequency attenuation suffered by a transmitted 
signal when it arrives at the receiver, after traversing a path of several wavelengths. A general PL model uses a 
parameter , to denote the power-law relationship between the separation distance and the received power. So, path 
loss (in decibels) can be expressed as [11] 

 
                                                            (1) 

 
where  is the distance between the receiver antenna and the transmitting antenna,  is the received-power 
reference point (default 1m),  characterizes free space, and  denotes the zero-mean Gaussian random variable 
of standard deviation . 

In practical applications, the assumption of free space is not realistic. The signal traverses through different 
mediums with different attenuation factors before reaching the user located receiver. In case of a nuclear 
infrastructure, the environment is very different; the transmission medium is subjected to high temperature and 
radiation that can impact the path loss as seen in Fig. 2. For the purpose of demonstration, TAC sensors can be 
placed at different locations outside the reactor pressure vessel, acoustic waves generated by the TAC sensors are 
collected at different access points inside and outside the containment structure. The path loss observed at each 
access point will be different because piping, conduits, and concrete structure have different attenuation factor. In 
this case, (1) does not hold and multipath propagation model is required. A detail review on different path models is 
presented in [12]. A detailed formulation of path loss model for the sensor configuration shown in Fig. 2 is beyond 
the scope of this paper. Authors assume that on an average the received signal strength is 10% less than the actual 
transmitted signal. 

EMPIRICAL MODE DECOMPOSITION 

Empirical mode decomposition proposed by Huang et al. [13] deals with nonlinear and non-stationary signals. It 
is an intuitive, direct, and adaptive approach as it derives the basis function from the signal itself unlike the Fourier 
transformation and Wavelets. 

The IMFs obtained from the decomposition of the signal  by EMD must obey two general assumptions; (i) 
each intrinsic mode must have the same number of extrema and zero crossings or differ at most by one and (ii) must 
be symmetric with respect to the local zero mean. These two assumptions assist in defining meaningful 
instantaneous frequency of an IMF. Based on these assumptions, the sifting procedure to obtain IMFs of the signal 

 is described as follows. Figure 3 shows the EMD process. 
1. Identify all the maxima and the minima in the signal . 

Generate its upper and lower envelopes using cubic spline interpolation. 
2. Compute the point-by-point local mean  from upper and lower envelopes. 



3. Extract the details, . 
4. Check the properties of  and iterate  times, then =  becomes the IMF once it satisfies 

some stopping criterion. It is designated as first IMF . 
5. Repeat steps 1 to 5 on the extracted data .   
6. The step 6 is repeated until all the IMFs and residual is obtained. 

The stopping criterion, the normalized squared difference between two successive sifting operations is defined 
as, 

 .                                                        (2) 

 
The  value is generally set between 0.2 and 0.3. The decomposed signal can be represented as,    
 

                                                   (3) 
 
where N is the total number of IMFs and  is the final residue which can be either the mean trend or a constant. 
 

 
 

FIGURE 3. Signal decomposition using EMD. 



INITIAL RESULT 

A signal is simulated; see Fig. 4(a), to represent a typical acoustic signal measured by an acoustic sensor. The 
simulated signal is corrupted with the Gaussian noise model as described in Section III. The noisy signal in Fig. 4(b) 
is subjected to attenuation as it is transmitted via different medium. It is assumed that the signal strength of the 
received signal is 10% less than the actual transmitted signal strength. 

The noisy attenuated acoustic signal is decomposed to generate IMFs as per the EMD process. EMD of the 
signal results in IMFs c1 to c13 and a residual component as shown in Fig. 5. Each IMF represents a particular 
frequency component in the actual signal. However, the number of IMFs generated depends on user-defined 
stopping criteria. After obtaining the IMFs, energy information of each IMF is computed, as seen in Fig. 6, based on 
the energy model in [14]. From the energy information in Fig. 6, the IMFs c4 to c13 has more energy compared to 
IMFs c1 to c3. Therefore, based on this empirical observation, IMFs c4 to c12 are combined along with residual 
component to reconstruct the actual simulated signal. Figure 7 shows the reconstructed signal (top) and the 
simulated signal (bottom). 

Based on simple energy information of IMFs, an accurate reconstruction of simulated acoustic signal is possible 
and is demonstrated. However this approach requires further rigorous evaluation. 

 

(a) (b) 
 

FIGURE 4. (a) Simulated sensor signal and (b) Simulated sensor signal with Gaussian noise. 

CONCLUSION AND FUTURE RESEARCH 

The paper proposed an acoustic emission signal processing technique to recover actual information from the 
noisy and attenuated sensor signal. The proof-of-concept of the proposed technique was demonstrated via 
simulation. Empirical mode decomposition technique was used to decompose noisy signal into IMFs and recovery 
useful information by partially combining IMFs based on the energy model. The reconstruction obtained accurately 
represents the actual information.  

The proposed approach lacks rigorous evaluation based on different path loss models and noise models, which is 
part of future research. 

 



 

 
 
FIGURE 5. IMFs of simulated noisy signal (IMFs c1 to c13 and the residual component. 



 

FIGURE 6. Energy of each IMF. 

 
FIGURE 7. Reconstructed sensor signal by combining IMFs c4 to c13 and residual component (top) and simulated sensor 

signal (bottom). 
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